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1. Gibb’s ensembles in Statistical Mechanics 
Previously in “Statistical Mechanics 1”, we have assumed that the systems we have dealt with 
were subject to the laws of classical mechanics and were described by equations of motion in the 
Hamiltonian framework.  
Analytical mechanics is characterized by describing a mechanical system in generalized 
coordinates usually denoted: q1, q2, q3,…,qn.  Differentiating with respect to time is indicated with 
a bullet above the variable e.g. dtdqq / , so that nqqqq  ,...,,, 321  represents the generalized 

velocities. 
Using the Lagrange approach, the kinetic energy is written as: 
 

),...,,,,,...,,( 321321 nn qqqqqqqqTT  ,  

and the potential energy:  
),...,,,( 111 nqqqqUU   

 
The Lagrange function L is defined as: 
 
(1.1)   L = T - U 
 
The Euler-Lagrange equations of motion are  
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The generalized momentum is defined by the equation: 
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The Hamilton function i.e. the energy is defined by: 
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From a Legendre transformation of the Lagrangian, one may obtain the Hamiltonian Canonical 
Equations i.e. the equations of motion: The a’s are a shorthand notation for the external parameters 
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If D is a physical quantity of the generalized coordinates and momenta, we may write. 
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Furthermore if D does not explicitly depend on time, so 0



t

D
, then (1.6) becomes: 
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 Using the Hamilton canonical equations: 
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(1.6) can be written as: 
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Where the Poisson parenthesis kHD },{  is defined by 
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If F is a physical expression that does not explicitly depend on time i.e. 0



t

F
, then F  is an 

integral to the equations of motion, if the Poisson parenthesis vanish:  
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Specifically, if F = qk  or  F =pk , then according to (1.8)   
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We shall use this formulation in the generalization of Classical Statistical Mechanics to Quantum 
Statistic. 
Specifically if P(p,q,t) is the probability density in phase space, then according to Liouvilles 
theorem: 
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The mean value of a physical variable F(p,q) is: 
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(1.13)    dpdqtqpPqpFqpF ),,(),(),(  

 
Where the probability density is normalized to 1. 
 

  1),,(   dpdqtqpP  

 

2. Gibb’s ensembles in Quantum Statistics 
Before we introduce quantum mechanical systems, we shall present the two different views of the 
dynamics of quantum mechanical systems. 
In the Heisenberg Picture the dynamical variables are Hermitian time dependent operators.  
Their variation with time are in principle the same as for classical systems, with the “only” 
difference that the Poisson parenthesis are substituted by commutators between operators. 
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In the Schrödinger Picture, on the other hand, the dynamical variables are time independent 
operators, which act on a time dependent state, the complex wave function ψ(x,y,z,t).  
The changes in the wave function ψ(x,y,z,t), is given by the Schrödinger equation: 
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The probability, that a particle is found within a volume dV = dxdydz at a time t is given by 2||  
the absolute square of the complex wave function ψ.  

The momentum p is calculated by the operator: 
x

i
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If the Hamilton function is: )(
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 , where U denotes the potential, the Schrödinger 

equation takes the more familiar form: 
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2 is the Laplace operator: 
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There is, however, an essential difference between the classical mechanical systems, and the 
quantum mechanical systems, namely for the latter, one always have to operate with ensembles, 
even if the system is in a certain state. The mean of a certain operator acting on the ensemble is 
given by the scalar product. 
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(2.5)     dVLLL    

 
For thermodynamic systems, however, a state is practically never a pure state, but rather a so 
called mixture of states, which is described by the density operator ),,( tqp . 
 
In the following, we shall adapt to the Schrödinger representation, where ρ is a hermitian operator 
with eigenvalues in the interval from 0 to 1 only. The mean value of a physical quantity L(p,q), in 
an ensemble, corresponding to the mixture of states in question, is given by the formula:  
 
(2.6)  }{}{ LtrLtrL    
 
Where tr means trace, that is, the sum of diagonal elements in a matrix representation.  
In an arbitrary representation, the trace of an operator is defined as the sum of the diagonal 
elements ξ of the matrix, which represents the operator in this representation.  Formally:  
 
(2.7)   
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'||'}{

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The summation may be replaced by integration. The trace is independent of the representation ξ.  
 
The formula (2.7) is written with the quantum mechanical notation, invented by P.A.M Dirac, 
where the state <ψ| is called a “bra vector ”, and the state |ψ> is called a “ket vector”.  The ket 
vectors are the dual vector space to the bra vectors. 
Thus   || A  is the expected value of the operator A, when acting on the state ψ. 
Specifically for the density ρ:   
 
(2.8)  1'||'}{
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In the ξ -representation (2.5) becomes:  
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The case of a pure state ψ expanded on the complete set | ξ > , where  ρ = |ψ><ψ|: 
 
(2.10)  )''(*)'(''||'    
 
In this case (2.8) is the same as (2.5). 
 
ρ is an idempotent operator i.e. ρ2 = ρ, because:  ρ = |ψ><ψ| follows ρ2 =  |ψ><ψ|∙|ψ><ψ| = |ψ><ψ| 
 
In general the density operator is time dependent (also in the Schrödinger representation), so it 
satisfies the differential equation: 
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Which is the quantum mechanical analog to Liouville’s theorem: The probability density in the 
development of a system in phase space does not change with time. In other words, the density 
operator, which characterizes the quantum mechanical ensemble plays the same role as the 
probability density function P(p,q,t) in the classical statistical mechanics1. 
 
From (2.6) and (2.11) follows the time derivative of a physical quantity L(p,q). 
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In generally (2.12) is non zero. Only if L is an integral to the equations of motion, i.e. when L  
commutates with H: [L,H]  = 0, then L is a constant of motion. 
 
There are, however, ensembles in which the mean of arbitrary physical quantity L is constant in 
time, namely when ρ commutates with H. 
 

(2.13)    00, 
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t
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In that case the ensemble is in statistical equilibrium. It occurs for example, when ρ(p,q,t) is a 
function f of the Hamilton operator alone. That is, when the ensemble is in statistical equilibrium. 
 
(2.14)  ),,( TaHf  
 

3. Canonical ensembles of quantum mechanical systems 
To establish the mixture of states which describe a quantum mechanical system with a certain 
temperature we may proceed exactly, as we did for classical systems1, when we replace the 
probability density function P, by the density matrix (operator) ρ. 
For a system composed of two independent parts with density operators ρ1 and ρ2 , the density 
matrix for the composed system is simply: 
 
(3.1)  122121    
 
Leading as described in detail in1 to an exponential dependence of ρ on H, and further to the 
canonical density matrix. 
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ψ(a,θ) is a real function, defined by the equation: tr ρ = 1, or by the equation: 
 

                                                 
1 Ole Witt-Hansen: Statistical Mechanics 1 
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(3.3)  
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The mean value of an arbitrary physical quantity in the canonical ensemble is now, according to 
(3.3) and (2.9). 
 

(3.4)  





























HH

LetreLetrLtrL }{  

And according to (3.3) 
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We introduce the “density exponent”  η by: 
 

(3.6)  
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 H
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As it is the case in Statistical Mechanics 1, we can now identify ψ, < H > and –k< η> (where k is 
Boltzmann’s constant) with the free energy, the internal energy, and the entropy respectively, 
since the relations between these quantities are exactly the same as the relations derived in the 
classical statistical mechanics. As a consequence we also have: 
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Where θ = kT, al are the external parameters, Al are the generalized forces, and  
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From (3.7) we get immediately: 
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In much the same manner, as we did in the classical statistical mechanics, we can obtain 
expressions for the fluctuations e.g. 
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This and similar formulas are the same as for classical systems, but ψ(θ,a) are generally different 
from the corresponding classical systems.  
For example the equipartion principle i.e. that the mean kinetic energy for a an atomic particle in 
thermodynamic equilibrium is equal to kT2

1  for each degree of freedom is not in general valid for 

quantum mechanical systems. 
 
Let us accordingly choose a representation of the quantum mechanical system , where the 
complete set of observable {ξ} is a set of quantities {α }, which are integrals to the equations of 
motion, that is, commutates with the Hamilton operator. 
 
(3.11)    0},{ H  
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e
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 , represented by diagonal matrices. 
 
We shall assume, that H and the {α } have only discrete eigenvalues, which is met for practically 
all thermodynamic systems. So we can numerate the eigenvalues for H and the {α }, as: 
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We have made explicit the energy dependence of the external parameters (a) (e.g. position of a 
piston in a container) . In the α representation, the variables {α }, H and ρ are given, by the 
matrices: 
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While any other physical quantity, will be given by: <i | L | k > = Lij.  
The trace of an arbitrary matrix A is: tr{A} = ∑Aii .  
So in the matrix representation (3.3): 
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where Z  usually is called the sum of states. The free energy ψ(θ, a) can therefore be calculated 
from Z,  since: 
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The thermodynamic quantities: Free energy (F) , Potential energy (U), Entropy (S) etc, are 
obtained from (3.8) and the fluctuations can likewise be calculated from (3.9). 
 
For a system in thermodynamic equilibrium at a certain temperature T, the probability pi of finding 
the system in a certain stationary state | i > is according to (3.12). 
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Which is named the Boltzmann factor. According to (3.5) the mean value of an arbitrary physical 
quantity L, which has a diagonal form in this representation, can be written as: 
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4. An ideal gas consisting of non identical particles 
We shall first consider a single particle with mass m in a box with the sides a, b and c. From the 
elementary quantum mechanic we know that the stationary states are characterized by three 
positive numbers (n1, n2, n3) and the corresponding energies are. 
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From (3.13) we then get for the free energy for this system: 
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To evaluate the sum of states, we have to evaluate a sum: 
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Introducing the variable n
l
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 , where l = a,b,c, and considering n as a continuous variable, so 

that dn
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  the sum can be transformed into an integral: 
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From which we from (4.2) get the expression for the free energy ψ. 
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If we consider a system of N particles with no mutual interaction, the total energy is the sum of the 
energies of the individual particle, but since the energy appears as an exponent of the exponential 
function, we shall multiply the results for a single particle to get the expression (4.5) for the free 
energy. 

(4.6)  
N

N

N
N

h

mmmmV
eaZ

3

2

3

321
2

3

)()2(
),(




  


 

From  

(3.7)   



m

l
ll daAdd

1

  

(3.9)  

















 H
a

A
l

l   

 
(3.8)     H   
  

(3.14)    Ze
i

aEi

lnln
)(

  







 


  

and (4.6) it follows: 
 
(4.7) )ln(3)(()2ln(ln 3212

3
2

3 hNmmmmVN N
N     

 

 )(()2ln(ln 3212
3

2
3

2
3

N
NN mmmmVN 


 



 

 

 )(()2ln(ln 3212
3

2
3

2
3

N
NN mmmmVN 


 

  

 
The total energy appears in the familiar form 
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(4.7) kTH NN
2

3
2

3 



 

  

 
If we put the volume V=a∙D, where D is the cross section of the container, and a is the position of 
the piston, we have for the generalize force F = <Al >. 
 

(4.8) 
V

ND

a

N
aD

a
N

a
AF l











 )ln(  

 
From which we get the pressure: 
 

(4.9)  
V

NkT

V

N

D

F
P 


   

 
Being the (classical) equation of state for ideal gasses. 
 
The derivation of (4.5), (4.7) and (4.9) relies on the assumption that all the masses of the particles 
are different, that they do not interact, and also that: 
 

 (4.10)  
kml

Tor
ml 2

22

2

22

2
1

2




 
 .   

We define 
kml

T
2

22

0 2


 . When l is about 0.01 m, and even if we insert m as the mass of the 

electron, then T0 becomes of the order 10-10 degrees, our approximation is very good indeed. 
 
Under the conditions stated above, quantum mechanics give the same results as above, but for 
identical particles, however, there appear some typical quantum mechanical effects for example 
for an electron gas in metals. Also Maxwell’s distributions of velocities 
 

(4.11)  kT

mv

ev
kT

m
vP 22

2
2
3

2

4
)(











  

 
Where P(v)dv is the probability of finding a particle with a velocity in the interval  [v, v + dv], in a 
system in thermodynamic equilibrium, is still valid within the quantum mechanical framework 
described above. There may, however, be a minor difference in the fluctuations. 
 

5. The linear harmonic oscillator. Solid crystal materials 
From elementary quantum mechanics, we are familiar with the stationary states of the harmonic 
oscillator are characterized by an integral number n, having the values n = 0, 1, 2, 3,… with the 
corresponding eigenvalues: 

(5.1)  )( 2
1 nEn     Where  

m

k




2

1
  
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The constant k  is the “elastic constant” from Hooke’s law: F =kx,  and m is the mass of the 
particle. The sum of states Z becomes in this case: 
 

(5.2)  







1

2 )(
n

n
hh

eeZ 





 

This represents an infinite geometric series with a quotient 
h

ex


  , where x < 1. 
 

(5.3)  






h

h

e

e
Z








1

2

   

 

(5.4)  )1ln(
2

ln 



 h

e
h

Z


           and           Zln   

From (4.7)  























ZZ

ZZH
lnln

lnln 22  

 

(5.5) 

1
2

ln2








kT

h

e

hh
H

Z
H 




  

 
The first term i (5.5) is the so called zero point energy. It is independent of the temperature, and 
since the internal energy only is defined apart from a constant, we may use the following 
expression for the energy of a harmonic oscillator in thermodynamic equilibrium.  
 

(5.6)  )(

1
kT

h
kTP

e

h
E

kT

h


 


  

Where 
1

)(



xe

x
xP  is called the Planck factor. Only for high temperatures, where 0x (or the 

classical limit 0 ), we have 1)( xP , and the expression (5.6)  passes into the expression for 
a classical harmonic oscillator. 
 
We obtain the first important use of (5.6), when we consider that a massive crystalline material 
consisting of N atoms (or ions). In the first approximation, it can be treated as 3N independent but 
identical harmonic oscillators with the same frequency ν. To find the energy, we simply add the 
energies from the 3N oscillators. 
 

(5.7)  

1

3)(3




kT

h

e

h
NkT

kT

h
NkTPE 


 

 
By differentiation with respect to T, we get the heat coefficient for constant volume cV. 
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(5.8) )(3
kT

h
ENkTcV


        where      

1cosh
)(

2
2
1




x

x
xE  

 
Which qualitatively corresponds with the experience. 
 
The formulas (5.7) and (5.8) were first derived by Einstein in a famous paper, and they were one 
of the first steps to support Planck’s original quantum hypothesis. In the further development done 
by Debye, Karman and Born, the real frequencies were inserted, and the results became also 
quantitative in correspondence with experimental data. 

6. Planck’s law for black body radiation 
Above we calculated the energy of a quantum harmonic oscillator as:  
 

(6.1)  

1


kT

h

e

h
E 


 

 
We shall now look at the energy distribution of radiation of a system consisting of atoms in 
thermodynamic equilibrium, meaning that it does not emit or receive radiation or other forms of 
energy. The radiation emitted from such a body has been given a somewhat misleading name (e.g. 
when applied to the sun), namely: Black Body Radiation. 
 
We assume that the body consists of harmonic oscillators, each having a frequency ν, and emitting 
electromagnetic radiation with an energy given by (6.1). 
 
The only thing we need to know is therefore the density )( of oscillators with frequency ν.  
To establish this, we look at a one dimensional stationary wave confined by a length L. 
Below is illustrated the familiar modes: 
 
        
 
  
 
The relation between the length L of the confinement and the individual modes is seen to be: 
 

(6.2)  ....3,2,1,
2

 n
n

L   

We are, however interested in finding the number of waves with a certain frequency, so we 

introduce the number of wave per length as 


 LddnLn
L

n


2
.   

In a box with 3 dimensions, we have: zyxzyx dddLdndndn 3 .  

When we are dealing with electromagnetic radiation, we have however two possibilities for 
polarisations, that we must take into account by adding a factor 2.  
 
(6.3)  zyxzyx dddLdndndn 32  
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Introducing polar coordinates for the wave number, where we in ordinary space have: 

drrdV 24  (Area of a sphere time its thickness dr), we get, since 
c




 22
  

(6.4)   d
c

VdLd
3

2
23 8

42)(   

 
The density per unit volume is therefore:  
 

 d
c

d
VV 3

28)(
)(   

 
Multiplying this result with (6.1), the energy of one oscillator, we get Planck’s famous formula for 
the intensity distribution of the black body radiation, that is, the distribution of electromagnetic 
radiation for a body in thermodynamic equilibrium. 
 

 (6.5)    d

ec

h
dI

kT

h

)1(

8
)(

3

3


   

In the limit of high temperatures or in the limit where 0 , we may expand 
kT

h
e kT

h 

1 , and 

Planck’s formula becomes: 
 

(6.6)  
 kTd

c
d

kT

h
c

h
dI

3

2

3

3 88
)(   

 
This is the Rayleigh –Jeans formula, derived from Maxwell’s equations. The Rayleigh –Jeans 
formula was one of the most serious obstacles to the classical description of electromagnetism, 
since the density of radiation goes to infinity as the square of the frequency, the so called 
“ultraviolet catastrophe”. This led Planck to introduce the idea of quantization of energy, obtaining 
his famous formula for the energy of a photon: hE  . 
 
The total energy radiated can then be calculated as:   
 

(6.7)  





0 3

3

0 )1(

8
)(   d

ec

h
dI

kT

h  

Making the substitution:  dx
h

kT
dx

h

kT

kT

h
x  

 

 
The integral is transformed into: 
 

(6.8)   











0

34

3
0 )1(

8
)( dx

e

x

h

kT

c

h
dI x

  
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The integral has no analytic solution expressed by standard functions, but it is a numerical value. 
The essential content of (6.8) is, however, that the total intensity emitted per unit area is 
proportional to T 4. This is known as Stefan-Boltzmann’s law. 
 
(6.9)  4)( TTII   where  )/(1067.5 428 KmW  
 
One may also derive Wiens law of displacement, which concerns the displacement of the 
frequency νmax , which is the frequency having the largest intensity Imax .  
To do so we differentiate 

 (6.10)      d

ec

h
dI

kT

h

)1(

8
)(

3

3


  

With respect to ν and put I’(ν) = 0. However the result is much easier to comprehend, if we use the 

variable 
kT

h
x


 , and express the ν dependence with x.   

(6.11)  
1

8
)(

3

23

33




xe

x

hc

Tk
xI


 

 
If we calculate I’(x) (but we don’t), I’(x) = 0 turns out to be a transcendent equation, but in any 
case the solution xmax will be a real number. So we will have: 
 

(6.12) 
T

r
h

kT
r

kT

h
x









max

max
max

max  

 
This is Wiens law of displacement. The frequency, which has the highest intensity grows linearly 
with the temperature.  

Often this relation is written using the wavelength instead of frequency: 
T

c
 . 

We obtain the free energy of the black body radiation by summing over all oscillators, omitting the 

zero point energy
2

h  in each term.  

(6.11) 
i

iZln         with    (5.4)   )1ln(
2

ln 



 ih

i e
h

Z


  

 
Replacing the sum with an integral over the frequencies, as we did in (6.4) with   
 

 d
c

VdLd
3

2
23 8

42)(    

 gives: 

(6.12)  





0

2
3 )1ln(

8  


de
c

V
h

 

 
To evaluate the integral we use the same substitution as we have done several times previously:  
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dx
h

kT
dx

h

kT

kT

h
x  

 

 
To transform the integral into: 
 

(6.13)  















0

2
3

0

2 )1ln()1ln( dxex
h

kT
de x

h


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The integral is then rewritten using a partial integration 
  

(6.14) 


























0

3

0

3

0

3

0

2

)1(3

1

3
)1ln(

3
)1ln()1ln( dx

e

exx
e

x
dedxex x

x
xxx  

 
The first term vanishes when inserting both the upper and lower limit 
 

(6.15)  







0

3

0

2

)1(3

1
)1ln( dx

e

x
dxex x

x  

 
When we remember (6.8) Stefan-Boltzmann’s law. 
 

(6.16)  
4

0

34

3
0 )1(

8
)( Tdx

e

x

h

kT

c

h
dI

x
 








 



  where )/(1067.5 428 KmW  

We finally find for (6.12), using the constant 
3









h

kT
from (6.13) :  

 

(6.17) 4

0

3

3

4

0

2
3 3)1(3

8
)1ln(

8
T

V
dx

e

x

c

k
Vde

c
V x

h

 





 



 

 
For the radiation pressure we find: 
 

(6.18)  ET
V

P 3
14

3
1 




 
 

Finally we can obtain the entropy density 
V

S
s   from  3

3
4 TV

T
kkS 


 








 , so 

 

(6.19)  3
3
4 T

V

S
s   

7. Ideal gas of identical particles. Boltzmann-, Bose- and Fermi-particles 
We shall now consider a physical system, consisting of N identical particles, which do not interact 
with each other. Our first task is to determine the stationary states of such a system. 
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If Hi is the Hamilton operator for the i’th particle, then Hi(pi, qi)  is the same function for all of the 
particles, and the over all Hamilton operator is: 
 

(7.1)  ),(
1

ii

N

i
i qpHH 



  

 
Since we have assumed that the particles do not interact, or interact so weakly, so it can be 
neglected, the stationary states will be composed of the individual stationary states of the particles. 
We shall refer to the individual stationary states with an index k. 
Eigenstates: ,...,...,, 321 k    with eigenvalues:  ,...,...,, 321 kEEEE , which because of the 

identity of the particles are the same for all particles. 
 
(7.2)  )'()'(),( ikkikiii qEqqpH    

 
The apostrophe in qi’ should remind us, that whereas p, q and H are operators the q’ in the 
argument of the wave function is an ordinary variable. 
 
Let us for a moment assume that even if the particles carry the same physical properties, they can 
in some way be distinguished. Then we can simply obtain an eigenvector for the over all system, 
as the product of the individual eigenvectors. 
 
(7.3)  )'()'()'()'( 321

)(

321 Nkkkk
i qqqq

N
   

Having the energies: 
(7.4)  

Nkkkk
i EEEEE  ...

321

)(  

 
(7.3) represents a stationary state, where particle (1) is in the state k1, particle (2) is in the state 
k2,.., particle (N) is in the state kN.  
 This obviously presupposes that the particles are distinguishable.  
 
The energies (7.4) may also be characterized in another way:  
Let the numbers N1 , N2 ,… Nk1 … denote the number of indices (k1 , k2 ,…, kN )  in (7.3) and (7.4), 
which are equal to 1, 2, 3,…., k,… respectively, which characterizes the singular states 

,...,...,, 321 k . Then the energy can also be written: 

 

(7.5)  
k

kk
i ENE )(       where      

k
kNN  

 
Although the energy E(i) is completely established by the numbers N1  , N2 ,… Nk1 , in which the 
state is, are in general not unique, since multiple states may have the same energy value.  
 
To the state (7.3) belongs namely any state Perm(ψ(i)) that is obtained by a permutation of the 
variables (q1’, q1’, q1’,… q1’,) , , having the same eigenvalue. In general Perm(ψ(i)) is different 
from ψ(i) .  
Only in the case, where the permutation exchange variables belonging to the same ki values in 
(7.3) , we obtain the same state. Since Nk  is the number of indices in (7.3) having the value k, the 



 Quantum Statistics 17 

number of different states must be (according to the formula for the number of permutations of N 
elements, where N1 , N2 ,… Nk ,… elements are identical. 
 

(7.6)  



!!!

!

21

)(

k

i

NNN

N
G  

 
In other words )(iG  is the level of degeneracy of the energy level )(iE  with respect to the particles 
similarity of the Hamilton operator H(i).  
There may also be casual a degeneracy, which comes from the fact that some of the individual 
particle energies are identical, but that is not our concern for the present. 
 
The description above presupposes that, although the particles have exactly the same physical 
properties, they are in fact distinguishable. In quantum physics such particles do not exist, but they 
have achieved the name Boltzmann particles from his treatises on statistical physics.  
 
For truly identical particles the quantum mechanical description can not be applied to the 
assumption that particle (1) is in state |1>, particle (2) is in state |2> etc. and that the stationary 
state of the system simply is the product og the states of individual particles. But rather that the 
stationary state of the system may be expressed by suitable sums of products of the type (7.3). 
 
In the quantum mechanical description of nature, there exists two kinds of identical particles. 
 
Bose-particles:  
            Where the states realized in nature are completely symmetric in the particles coordinates. 
       
Fermi-particles: 
      Where the possible states are completely anti-symmetric in the particles coordinates. 
 
We have therefore in the two cases:  ),...,...,,...,()},...,...,,...,({ 11, NijNjiji qqqqqqqqPerm   , 

where the plus sign applies to Bose-particles. 
 
I elementary quantum mechanics it is shown that a symmetric or anti-symmetric state will remain 
symmetric or anti-symmetric independently of its interaction with other particles (or mutual by 
interaction), and this is the reason why we have to distinguish between Bose- and Fermi-particles. 

7.1 Bose- particles 
In the case of non interacting Bose-particles, the various eigenfunctions of  H may be listed as: 
 
(7.7) )}'()'()'()'({ 21

)(

21 Nkjkkk
perm

i qqqqPerm
Nj

     

 
Where the summation is extended over all N! permutations of the variable )',...',...,','( 21 Nj qqqq . 

)(i is obviously an eigenvector to H with energies: 

(7.8)   
k

kk
i ENE )(  
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Evidently )(i  is symmetric in the variables )',...',...,','( 21 Nj qqqq , which also reflects the fact that 

the particles are indistinguishable. Thus we may no longer say that particle (j) is in the state 
1k , 

but rather that there are 
1kN  particles in that state. 

So we may only conclude that there are N1 particles in the state ψ1, N2 particles in the state ψ2, and 
so on. By the same token,  2

21
)( |)',...',...,','(| Nj

i qqqq is the probability of finding a particle at 

)'( 1q , another at )'( 2q , and so on, but not which particle. In accordance with that, there is only one 

total stationary state )(i  with the energy given by (7.8) , corresponding to a set of values: 
 
  N1, N2,… Nk,… 
 
Perm( )(i ) is the same state as )(i so the degeneracy of the energy )(iE  is 1)( iG . 
That an energy state is degenerated means that several states belong to the same energy level.  

Thus we may characterize all eigenstates )(i  by the integers Nk, where 
k

kNN  

7.2 Fermi-particles 
For Fermi particles, we have instead of (7.7)   
 
(7.9) )}'()'()'()'({ 21

)(

21 Nkjkkk
perm

perm
i qqqqPerm

Nj
    

 
Where perm  = +1 if the permutation is even, otherwise perm = -1.  

Obviously (7.9) is equal to the determinant: 
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From which it is clearly seen that )(i is anti-symmetric, since a permutation of two coordinates q 
means permuting two columns, which changes the sign of the determinant. 
 
As it was the case of the Bose-particles the state )(i  having the energies (7.8) is not degenerated, 
since a permutation of a stationary state only changes its sign, but do note generate a new state.  
 
However Fermi-particles impose the condition on the numbers Nk that they can only have the 
values 0 and 1. If one of the occupation numbers N1,  N2,… Nk… is equal to or larger than 2, it 
would mean that two or more of the numbers k1,  k2,…kN were equal, which again would mean that 
one or more of the columns in the determinant were equal, implying that )(i is identical zero, and 
therefore can represent no physical state. 
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This expresses that Fermi-particles obey the so called Pauli principle, whereby a one particle state 
can only be occupied by one Fermi particle. 

7.3 Boltzmann- ,Bose- and Fermi-particles 
Besides the Bose- and Fermi-particles we shall also be concerned with the previously mentioned 
Boltzmann-particles. Strictly speaking Boltzmann-particles do not exist as such in nature, but at 
higher temperatures, as we shall see, both Bose- and Fermi-particles tend to behave like 
Boltzmann-particles. At higher temperature is to be understood, as above room temperature. 
 
To treat a gas consisting of N identical particles in thermodynamic equilibrium at a certain 
temperature T, we must calculate the free energy ψ or the sum of states Z: 
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and the summation is over all the energies in the total system. We have demonstrated above that 
for all three types of particles the energies can be written in the form: 
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Bose-particles: ,..),( 21 NNG =1 
 
Fermi-particles: ,..),( 21 NNG = 1 
 
 if all  Nk are either 0 or 1, otherwise ,..),( 21 NNG = 0 
With this definition, The Pauli principle is satisfied, regarding the Fermi-particles. 
 
We shall then treat a gas, consisting of either of the three types of particles. 
According to (3.16):  

Z

eL

e

eL
L i

E

i

i

E
i

E

i

i

i

i




















  

and using (7.12) we find in all three cases for the mean of  Nk , the average number of particles in 
the k’th energy level. 
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Where   
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To obtain the last equation, we have used the relation: 
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In a similar way we find: 
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Which gives for the fluctuation of Nk. 
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The bosons are the particles in nature with integral spin, like photons, alfa-particles, pi-mesons, 
and many others less common particles. 
 
The Fermions are particles with half integral spin, predominantly the electron, the proton and the 
neutron. 
 
As mentioned earlier, the Boltzmann particles do not exist in nature at the atomic level, but they 
are nevertheless of great interest, because both bosons and fermions tend to behave as Boltzmann 
particles, even at moderate temperatures.  

8. Boltzmann particles 
Let us consider N Boltzmann particles confined in a rectangular box with side lengths l1 , l2 , l3 .  
This is actually the situation we have already dealt with in section 4.  
The single particle states are here characterized by the variables ),,()( 321 nnnk  , and the energy 

levels are given by:  
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With the formulas derived in the last section, we have the expression for the sum of states:  
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Using a generalization of binomial formula  
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To the polynomial formula. 
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surprisingly) that for Boltzmann particles NzZ   , where 
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ez   is the sum of states 

for a single particle. The expression can be further partitioned as the product of three sums of 
states, one for each degree of freedom. 
If we approximate the sums by integrals the derived result above becomes identical to what we 
obtained earlier in (4.4) for an ideal gas. 
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Hold together with (8.4)  
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9. Bose-particles 
For bosons the sum of states is according to (7.12)  
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This bond, however, makes the sum difficult (actually impossible) to evaluate. If N is sufficiently 
large, however, we may approximate it with a weighted mean of mixture of states, where Nk  can 
have values from 0 to infinity. So we replace each term (k) with: 
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For the total sum of state we then get: 
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The accuracy of this approximation depends of course on the choice of λ. 
Such a weighted mixture of ensembles was already considered by Gibb’s regarding classical 
systems as a “grand ensemble”. In a grand ensemble, the relative probability of finding a certain 
set of occupation numbers is. 
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The mean and fluctuation of Nk  is obtained as in (7.13) and (7.14).  
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As the summation over each of the variables (N1, N1,…..) are independent of each other, the sum of 
states Z is simply the product of all individual sum of states. 
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Where we have used the formula for an infinite geometric series: 
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For the mean of N, we get from (9.4). 
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And for the variance: 
 

(9.10) 
















k
E

E

k

k

e

eNZ
NNN

2
2

2
222

)1(

ln
)(








 =   

 
And from (7.13) it follows in a similar manner. 
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Which comply with (9.10), since the variables Nk  are statistically independent. 
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Finally we find for the Hamilton function (The energy). 
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Which shows that 
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We may then realize that when the total mean <N> is a very large number N0, the fluctuations of N 
around <N> will in general be very small compared to <N>, and consequently the calculations 
applied using the“grand ensemble”, will practically be identical to the original ensemble, when we 
identify <N>  with N0. 
To show that this is in fact the case, we notice that  
 

<Nk> = 

1

1





kE

e

 is practically equal to 
1

1

e
, as long as 

k
E   that is kT

k
E  .  

 
(In the opposite case the particles will behave like Boltzmann particles.) 
 
If n is the number of single particle states k for which kT
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From (9.14) we have:  
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Since we have assumed that <N>=N0, we find: 
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In general both N0 and n will be extremely high numbers. To illustrate this, we consider a cube 
with side length l containing the particles. According to (8.1) the energy levels are characterized 
by three numbers (k) =(n1, n2, n3), and the energy levels are given by (8.1). 
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If we put l1= l2= l3 = l, we find:  2
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We are interested in finding the number of positive integers (n1, n2, n3) which satisfy this relation. 
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integers. So the number of states n can therefore be estimated to: 
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For alfa-particles in a volume of 1 cm3 T0 = 10-13 K. So even for low temperatures the number n is 
extremely large. For KT 10

1 , a calculation shows that . 1810n . 

In other words for a boson gas having a large number of particles (9.7)  
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is a very good approximation to the sum of states (9.1): 
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This in contrast to (8.4) 
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 , which is valid for Boltzmann Particles. 

For a gas of bosons the average number of particles with a velocity between v  and v + dv  the 
“Maxwell’s distribution of velocities” becomes: 
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The most important application of this, is Planck’s black body radiation of a boson gas, where the 
particles can be perceived as having an energy Ek = hν, and with a number of states k, 
corresponding to a frequency between ν and dν, of which the density is given by (6.4): 
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The mean energy of the photons having frequency between ν and dν is then: 
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In accordance with Planck’a formula (6.5).  
 
Also the expression for the mean energy comply with that of Boltzmann particles, if we perceive 
the black body radiation consisting of a boson gas of a grand ensemble with λ = 0. This means that 
the total number of photons is not fixed, but rather depends on the temperature and the volume. 
From (9.24) we get the total average number of photons per unit volume. 
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So the total number of photons per unit volume grows in proportion with the third power of the 
temperature.  
In a similar manner we find from (9.10)  
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Which is vanishing small compared to <N>2 from (9.26). 
 
On the other hand, if we consider a system of Bose particles with a fixed large number of photons 
N0, the value of λ is determined by (9.9)  
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The solution to this equation is considered to be solved with respect to λ  = λ (N0,θ ) to get ln Z, 
and thus finding the free energy as a function of θ = kT . For large values of λ , the formula (9.9) 
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For a gas under common conditions this occurs already at normal temperatures.  
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10. Fermi particles 
For Fermi particles the sum of states is again by the expression (9.1) 
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With the condition that all Nk are either 0 or 1. To do the summation we replace the ensemble with 
that of a canonical grand ensemble belonging to the sum of states, which relives us from the band 
imposed on Nk. We then find: 
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For the mean and the fluctuations of N, we get as before. 
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Analogously to what we found for bosons. Furthermore we get for Fermi particles, according to 
(7.13) and (7.14) 
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This shows that the fluctuations of N can be neglected. As long as N is a large number i.e. 
comparable to Avogadro’s number. It is therefore completely safe to replace the original canonical 
ensemble with a fixed total number N0 with a grand ensemble where the mean <N> is equal to N0. 
 
As we found in (10.3)   
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Also the Fermi distribution passes into the Boltzmann distribution for large values of N. For a 
given large total number N0,  the parameter λ is determined by the equation  
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This equation is considered to be solved with respect to λ  = λ (N0,θ ) to get ln Z, and thus finding 
the free energy as a function of θ = kT . For large values of λ , the formula (10.6)  
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turns into the corresponding formula for Boltzmann particles:  
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On the other hand, near the absolute zero, only the lowest energy levels are occupied. According to 
the Pauli principle, this means that all Nk  from k = 1 to k = N0  are 1, while Nk  = 0 for k  > N0.  
If we put 00

EEN  , the  equation (10.12) will for 0  have the form:  
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Which allegedly for 0  has the property of being 1 for Ek < E0 , and being 0 for Ek > E0 .  In 
other words for T -> 0 we must have  
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In the following section, we shall investigate more closely the energy distribution in an electron 
gas in the energy area in between. 

11. An electron gas 
The most important application of Fermi particles, is an electron gas of non relativistic electrons, 
which we assume are contained in a rectangular box with sides l1, l2, l3.  Then the energy levels are 
determined by (8.1)   
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Where each state is to be counted twice, because of the electron spin. Writing (11.1) in terms of 
the momenta. 
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We can assume, that the momenta pk are practically continuous variables having values from zero 
to infinity. The number of states lying between pk and pk + dpk  are  
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In polar coordinates: dppdpdpdp 2

321 4 . Assuming that the components of p


 only takes 

positive values, we have only one octant of the sphere, we get for the number of states between p 
and p + dp. 
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The energies for these states are 
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The number of electrons with a momentum between p and p + dp is therefore: 
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If all sums are converted to integrals then for example the equation that fixes λ for a given N0 
becomes. 
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And for the sum of states we have from (10.3) )1ln(ln
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And for the energies  
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For the pressure we get 
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Doing a partial integration 
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The contributions from the upper and lower limits are both 0, and the integral can be rewritten 
after some elementary transformations. 
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Where u = <H>/V the energy density in the electron gas. 
To establish the energy and pressure as a function of θ and volume V for a fixed total number N0, 
we shall imagine that (11.7) is solved with respect to λ, so that we have: 
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(11.13)  ),,( 0NV   

 
This expression is then to be inserted into the right side of  (11.9) and (11.12). Introducing the 
variable x, by  
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As a new integration variable in (11.8) and (11.9) these equations can be written as. 
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Where the function ),(   is defined by 
 

(11.17)  


 


0 1
),( 




xe

dxx
 

 
From (11.12), (11.15) and (11.16) we furthermore get. 
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These expressions are exact, and they are valid for all temperatures. In the domain of very large 
temperatures and near the absolute zero, on can establish some approximate expressions.  
For large temperatures  λ >> 1,, we get from (10.13) 
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So for the energy we arrive at the same expression as for the Boltzmann particles. 
Near the absolute zero, that is, for 0  , we have according to (10.14) and (10.15) 
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A graph of the function F is shown below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At the absolute zero we therefore find. 
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In the momentum space the electrons fill in the internal of a sphere with radius p0. The energy at 
the surface of the sphere, (the so called Fermi sphere), is therefore E0 and it depends according to 
(11.24) exclusively on the electron density n0 = N0 /V. 
Energy and pressure of a Fermi gas at the absolute zero is therefore not zero, as it is in a 
Boltzmann gas, since we for T = 0 have: 
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This can also be written 
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Furthermore we get from (11.12) for the pressure at T = 0 
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At the absolute zero   according to (11.21). We shall now investigate the case where θ  > 0, 
but still 
(11.28) Θ =kT << E0 , 
 
Where λ has large negative values. For such values of λ , we may for the functions ϛ  use a series 
expansion due to Sommerfeld, of which we shall only keep the first two terms. 
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So according to (11.18): 
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Where we have used the equation (11.24). We “just” need to express λ as a function of θ, V  and 
N0 .  
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Where we have used (11.24): 
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Under the condition (11.28), the right side of (11.33) is a very large number, and then it may be 
solved by the method of successive approximations. In the first order we get: 
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That is, the value we find for 0 . If we put this value into the parenthesis on the left side, we 
obtain the second approximation: 
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When this is inserted in (11.31) we get in the same approximation: 
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The Fermi function now becomes, with λ given by (11.36) 
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This function is displayed in the figure above as the second graph. 
 

When 
0E


 is sufficiently small, near the absolute zero, this function can be replaced by  
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And the two cross hatched areas separated by E = E0. are equal. 
In the case θ = kT << E0 , when the gas is in a degenerated staet, the variation of the energy with 
temperature, as displayed in (11.36) is entirely different from the classical expression  (11.25). 
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Not only has the energy a finite value when T approaches zero, but what is more important the 
specific heat at constant pressure cP , which in the classical description is constant, is given by: 
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That is the specific heat goes to zero when the temperature does. 
 
Sommerfeld brought forward this issue, to explain why the conducting electrons in a metal 
apparently contributed less to the specific heat, than what one should expect. The explanation was 
for electrons that the formula (11.42) already has an influence at normal temperatures. 
 


